
Business Informatics Group
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstraße 9-11/188-3, 1040 Vienna, Austria
phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896
office@big.tuwien.ac.at, www.big.tuwien.ac.at

Cross-disciplinary Modeling –
the Good, the Bad, and the Ugly
QRS 2016

August 2 2016, TU Wien

Gerti Kappel & Team

Motivation

 The Good
 Heterogeneity Engineering since Distributed Database Systems
 Language / Transformation Engineering since Model-Driven Engineering

 The Bad
 Dealing with Views, Interfaces, (In-)Consistencies still in its infancy

 The Ugly
 Lots of implicit conventions, hidden knowledge around
 Missing domain knowledge

2

Content

3

 Introduction
 Model-Driven Engineering in Software Engineering
 Cyber-Physical Production Systems (CPPS)

 MDE in CPPS I: Interface Integration

 MDE in CPPS II: Model Exchange

 Résumé

Introduction Interface Integration Model Exchange Rèsumè

MDE: From Software to Systems
Main Motivation: Ubiquitous computing, software, models

4J. Bézivin. Software Modeling and the Future of Engineering. STAF Keynote, 2014.

The CPPS Domain
Scope and Scientific Challenges

5D. Gerhard: TUWin 4.0 - One Stop Shop für Industrie 4.0, Fachkongress Industrie 4.0, 2014.

Separation of Problem Space and Solution Space
Domain Engineering vs. Support Engineering

6J. Bézivin. Software Modeling and the Future of Engineering. STAF Keynote, 2014.

Engineering
Fields

Support
Engineering

Domain
Engineering

Robotics
Engineering

Mechanical
Engineering

Civil
Engineering

Electrical
Engineering

Process
Engineering

Service
Engineering

Model
Engineering

Data
Engineering

{incomplete,
overlapping}

{incomplete,
overlapping}

Taking a closer look at CPPS

7

Problem and Solution Clusters

 Sub-Domains
 Economics
 Logistics
 Internet of Things
 Mechanics
 Electrical Engineering
 Mechatronics
 Control Engineering
 Enterprise Engineering
 Robotics
 …

 Support Engineering
 Product Line Engineering
 Model Engineering
 Ontology Engineering
 Requirement Engineering
 Component Engineering
 Document Engineering
 Agent Engineering
 …

Main Characteristics
 Multi-disciplinary field
 Socio-Cyber-Physical Systems

Main Challenges
 Which solutions are usable by domain

engineers?
 Which adaptations are necessary for

the specific domain?

Content

8

 Introduction
 Modeling and Model-Driven Engineering in Software Engineering
 Cyber-Physical Production Systems (CPPS)

 MDE in CPPS I: Interface Integration

 MDE in CPPS II: Model Exchange

 Résumé

Introduction Interface Integration Model Exchange Rèsumè

Interfaces within a manufacturing company
Clear definition of system boundaries (ERP – MES – SCADA/RFID/PLC)

9

Enterprise Level
time period: quarterly,
monthly

Shop Floor Control Level
time period: weeks, shifts
per day

Shop Floor Field Level
time period: minutes,
seconds

ISA-95
Interface
Standards

ISA-95
Functional
Model

IEC, OPC, &
OMAC
Interface
Standards

Source: ISO/IEC 62264-1
Enterprise-Control System Integration
Part 1: Models and Terminology

Functional Enterprise-control model

10

Based on the PURDUE Enterprise Reference Architecture

• The model describes 31 information flows between the
enterprise domain (level 4) and the control domain (level 3)

Source: IEC 62264-1
Enterprise-Control System Integration
Part 1: Models and Terminology

11

How to make a product
– bill of material

What is available –
Resource planning

Performance AnalysisWhen - Scheduling

Types of Information Exchange between Level 4 and Level 3

Source: IEC 62264-1
Enterprise-Control System Integration
Part 1: Models and Terminology

ISA-95 Information models
B2MML: XML serialization of the ISA-95 models

12

Source: IEC 62264-1
Enterprise-Control System Integration
Part 1: Models and Terminology

REA Ontology (ISO 15944-4)
Resource Event Agent Business Ontology

13

 RESOURCES: goods, services, labor, rights – have utility, are scarce and are
under the control of a legal or natural person

 EVENTS: are occurrences in time that relate subsequent process states to
each other
 Increment event: gaining control of a resource
 Decrement event: loosing control of a resource

 AGENTS: enterprises, departments, persons (accountable for, participate in,
initiate)

 REA differs two kinds of business activities
 EXCHANGE (Transfer) exchange of resources between business partners
 TRANSFORMATION „production process“ - implicit exchange and

conversion (use, consume, produce)

REA Meta Model

14

Source: FFG BRIDGE-Project REAlist
Mayrhofer, Mazak, Wally, Kratzwald, Huemer, 2014

REA: Value Net and Value Chain

External View

Interal View

Source: Enterprise Information Systems:
A Pattern-Based Approach, Dunn et al., 2004

InteGra 4.0 Approach

16

ERP

MES

REA

Model-driven Smart Engineering: Alignment
of the concepts of REA and the models of
ISA-95
• Horizontal integration through value

networks
• Vertical integration and networked

manufacturing systems
• End-to-end digital integration of

engineering across the entire value chain

ISA-95

ISA-95 describing information
flows between the enterprise
domain and the control
domain

Business functions across
the entire value chain , from
the moment an order is
placed right through to
outbound logistics

REAREAISA-95ISA-95

InteGra 4.0InteGra 4.0

Content

17

 Introduction
 Modeling and Model-Driven Engineering in Software Engineering
 Cyber-Physical Production Systems (CPPS)

 MDE in CPPS I: Interface Integration

 MDE in CPPS II: Model Exchange

 Résumé

Introduction Interface Integration Model Exchange Rèsumè

Engineering of CPPS
 Industry 4.0: computerization of manufacturing
 Principles

 Interoperability: the ability of CPPS and
humans to connect and communicate

 Virtualization: a virtual copy of
the factory with sensed data

 Decentralization: the ability of
CPPSs to make decisions on their own

 Real-time capability: monitoring,
analysis, planning, execution

 Modularity: flexible adaptation of
smart factories to changing requirements

 …
 Challenges

 Multi-disciplinary domain
 Heterogeneous document/tool landscape
 …

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0

18

Introduction: Engineering of industrial production systems

19

Lab-sized flexible manufacturing system:
- hardware parts: turntables, motor,

Raspberry PI, Field I/O modules,
electrical wirings.

- software: Raspberry Pi programs
(IEC 61131-3 standards, PLC
programming)

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0

 Equipment Center for Distributed Systems,
Institute of Ergonomics, Manufacturing Systems
and Automation at Otto-v.-Guericke University
Magdeburg.

Problem Description

20

 Different engineering disciplines are
involved in the engineering process

 Engineering steps are often done in parallel

 Current solutions often lack support for…
 Versioning
 Linking different engineering artefacts

Typical industrial plant engineering process
R. Drath, B. Schröter, and M. Hoernicke,
“Datenkonsistenz im Umfeld heterogener
Engineering-Werkzeuge”,
in Automation Conference, 2011, pp. 29-32.

Artefacts found in CPPS Engineering Process

21

Engineering of CPPS: Common Format?

22

 AutomationML (AML)
 Emerging standard for tool data exchange
 Foundation for harmonizing engineering

data coming from an heterogeneous tool
network by means of a unified format
and data model

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0

 AutomationML website: http://www.automationml.org
 IEC 62714 - Engineering data exchange format for use in industrial automation systems engineering - AutomationML,

www.iec.ch, 2014.

Our AML Research Topics

23

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0Modeling
AML

Language
Connections

Evolution
SupportLinking

AML

Our AML Research Topics

24

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0Modeling
AML

Language
Connections

Evolution
SupportLinking

AML

AutomationML =
Automation (Markup | Modeling) Language?

25
 S. Faltinski, O. Niggemann, N. Moriz, A. Mankowski: AutomationML: From data exchange to system planning

and simulation, in Proc. of ICIT, 2012, pp. 378–383.

AutomationML =
Automation (Markup | Modeling) Language?

26

 Object-Oriented Format
 Automation object: physical or logical entity in the automated system

 Tree-Based Format?
 Plant topology information: The plant topology acts as the top-level data

structure of the plant engineering information and shall be modelled by
means of the data format CAEX according to IEC 62424:2008, Clause 7,
Annex A and Annex C. Semantic extensions of CAEX are described
separately. Multiple and crossed hierarchy structures shall be used
by means of the mirror object concept according to IEC 62424:2008,
A.2.14. Mirror objects shall not be modified; all changes shall be done at
the master object.

From Tree-based to Graph-based Representations

27

Language Engineering via Metamodeling

 T. Kühne: Matters of (Meta-)Modeling. Software and System Modeling 5(4), pages 369-385, 2006.
 G. Engels, C. Lewerentz, M. Nagl, W. Schäfer, A. Schürr: Building Integrated Software Development

Environments Part I: Tool Specification. ACM Trans. Softw. Eng. Methodol. 1(2):135-167, 1992.

Meta-Metamodel Meta-
Language

defines

Metamodel Language
defines

Model
represents

System
«c

on
fo

rm
sT

o»
«c

on
fo

rm
sT

o»

TypeGraph

«c
on

fo
rm

sT
o»

formalized_by

TypeGraph

«c
on

fo
rm

sT
o»

formalized by

Graph
formalized by

Graph
is a

LinguisticMetamodeling StackGraph Theory

AutomationML by Example

Instance Hierarchy (IE, ExtInt)

System Unit Class Library
(SUC, IE, ExtInt)

Role Class Library (RC, ExtInt)

Interface Class Library (IC)

System under Study

28

 Equipment Center for Distributed Systems,
Institute of Ergonomics, Manufacturing Systems
and Automation at Otto-v.-Guericke University
Magdeburg.

Metamodeling AutomationML

29

 AutomationML family is defined by a set of XML Schemas
 Systematic metamodel creation process

 Step 1: Generative approach to produce initial Ecore-based metamodel
 Step 2: Refactorings for improving language design

 Resulting metamodels
 are complete and correct with respect to XML Schemas
 allow to import/export data from/to XML data

 A. Schauerhuber, M. Wimmer, E. Kapsammer, W. Schwinger, W. Retschitzegger: Bridging WebML to
Model-Driven Engineering: From DTDs to MOF. IET Software 1(3), 2007.

AML Metamodel

AML Model

AML XSDs

conformsTo

EcoreXSD

AML XML

Correspondences

conformsTo

conformsTo

conformsTo

Metamodel
Transformation

implies

implies

Model
Transformation

AutomationML Metamodel Exceprt

30
 S. Biffl, A. Lüder, E. Mätzler, N. Schmidt, M. Wimmer: Linking and Versioning Support for

AutomationML: A Model-Driven Engineering Perspective, accepted for INDIN, 2015, pp. 1–8.

«represented by»

«conforms to»

AutomationML (AML)

31

.ecore
(from .xsd)

metamodel

manufacturing system

model:: IH 1

2

3

4

5

= AML editor

AutomationML (AML)

.ecore

model:: SUClib

metamodel

32

«represented by»
manufacturing system

«conforms to»

= AML editor

1

2
3

4

5

6

Role = Abstract functionality
played by system elements,
without implementation
details

AutomationML (AML)

33

.ecore

model:: RClib

metamodel

manufacturing system

= AML editor

«represented by»

12

3

4

AutomationML (AML)

34

.ecore

model:: IClib

metamodel

manufacturing system

= AML editor

«represented by»

1

2

3

Flexible Manufacturing System in AML Editor

35

= AML editor

manufacturing system

Our AML Research Topics

36

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0Modeling
AML

Language
Connections

Evolution
SupportLinking

AML

Further Benefits of Explicit Models

37

Model Transformation Pattern and Supporting Tools

K. Czarnecki, S. Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), pages 621-646, 2006.

Transformation
Implementation

Model

Metamodel

Model

Metamodel

Transformation
Engine

writesreads

ex
ec

ut
es

«c
on

fo
rm

sT
o»

«c
on

fo
rm

sT
o»

Transformation Scenario Investigated
AML and SysML: Two Unrelated Modeling Standards

= domain
= tool

= doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

overall system design

mechanical
engineering

electrical
engineering

software
engineering

38

SysML in a Nutshell (1/2)

39

 SysML is a graphical modeling
language standardized by OMG for
the development of large-scale,
complex, and multi-disciplinary
systems in a model-based
approach.

 It provides modeling concepts for
representing the requirements,
structure, and behavior of a
system.

 Captures the overall design of a
system on a high level of abstraction
and traces this design to the
discipline-specific models

…

SysML in a Nutshell (2/2)

40

 Additions to UML for
Requirements and Properties
 Requirement: SysML provides

modeling constructs to represent
text-based requirements and
relate them to other modeling
elements.

 Constraints and Parametric
Diagram (constraint analysis)

 Customization of UML for
structural modeling through
Classes and Composite
Structures
 Block derives from

CompositeStructures::Class

UML

SysML
UML4
SysML

Requirements
Properties

Deployments
Interactions Classes

CompositeStructures
Activities
StateMachines

From AutomationML to SysML
and Back Again

41

 Commonalities and differences between the structural modeling
sublanguages of AML (CAEX) and SysML (Block Diagrams)

 AML metamodel and profiles for UML and SysML
 Transformations between AML and SysML (UML/SysML already

available through language definition)

Class Diagram(s)
Composite Structure Diagram(s)

Block Definition Diagrams (BDDs)
Internal Block Diagrams (IBDs)

Tree-based view

«represented by»

Comparison of AML and SysML

42

1. AML: Data exchange format vs. SysML: language for systems modeling
• AML serves as a standardized exchange format between the diverse

discipline-specific tools involved in the development of automation
systems.

• SysML is designed as a language for systems modeling, i.e.,
representing the design of a system that builds the basis for planning,
implementing, and analyzing it.

2. AML: Tree-based editing vs. SysML: diagram-based editing
• Benefits of graphical representation: visualizing the architecture of a

system and the power of building multiple views on a complex system

Comparison of AML and SysML

43

3. AML: Prototype-based vs. SysML: Class-based

model:: SUClib

«represented by»

prototype for IH::IEs

model:: IH

cloning
(SUC->IE)

clone of Turntable SUC

manufacturing system
«represented by»

Comparison of AML and SysML

44

4. Extensibility Mechanisms
• AML. RClibs can be used for introducing new concepts

• Role. A role is a class that describes an abstract functionality without defining
the underlying technical implementation.

• A Resource is an entity involved in production; they execute processes and
handle products. Examples for resources are robots, conveyors or machines.
Resources may be hardware components of a production system, but also
software.

• A Product depicts a produced good. Products are processed by resources.
• A Process represents a production process including sub-processes, process

parameters and the process chain.

• SysML: UML profiling mechanism

Modeling with AML4SysML

45

 SysML is an extension of UML
 We reuse and extend the common

UML SysML subset

<<stereotype>>
InternalElement

(IE)

<<metaclass>>
Class

<<stereotype>>
InternalElement

(IE)

<<stereotype>>
Block

<<metaclass>>
Class

AML4UML AML4SysML

UML
Metamodel

SysML
Profile

AML
Profile

Flexible Manufacturing System in AML Editor

46

= AML editor

Flexible Manufacturing System in AML and SysML (excerpt)

47

Flexible Manufacturing System in AML and SysML (excerpt)

48

bdd PlantComponents (SUClib)
«model library»bdd IAF Plant «IH»

Flexible Manufacturing System in AML and SysML (excerpt)

49

Summary

 Mapping between the structural
modeling concepts of AML and SysML
 Comparison
 Metamodels
 UML/SysML profiles
 Transformations
 Bridge between IEC and OMG

 Future Work
 Explore mappings between the behavioral modeling parts of AML PLCopen

and SysML Activity Diagrams
 Code generation, model transformation to formal domains for analysis

purposes

50

Our AML Research Topics

51

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0Modeling
AML

Language
Connections

Evolution
SupportLinking

AML

Problem Description

52

 Engineering industrial production systems is a multidisciplinary activity
 Engineers from diverse domains are involved
 Engineers are working in parallel

> Challenge: Evolution of engineering data has to be managed

 AutomationML is the predominant standard for representing
engineering data of production systems in a model-based way
 Availability of libraries defining prototypical system elements is an

important pragmatics of designing production systems with AutomationML
 Model of a production system is built by cloning prototypical elements

> Challenge: Co-evolution of prototypes and clones has to be managed

Motivating Example

53

Contribution

54

Formal framework to managing prototype/clone co-evolution

1. Generic metamodel for prototype-based languages

2. Levels of consistency rigor between prototypes and clones

3. Change types on prototypes and their impact on prototype/clone
consistency

4. Repair operations to re-establish prototype/clone consistency

 L. Berardinelli, S. Biffl, E. Maetzler, T. Mayerhofer, M. Wimmer: Model-Based Co-Evolution of
Production Systems and their Libraries with AutomationML, 20th IEEE Conf. ETFA, 2015, pp. 1-8.

1. Generic Metamodel for Prototype-Based Languages

55

context Object::createClone()
post: new c:Object |
‐‐ clone refers to its prototype
c.prototype = self and
‐‐ clone contains all prototype slots
self.slots ‐> forAll(pS | c.slot ‐> one(cS | pS.name = cS.name and

pS.value = cS.value)) and
‐‐ clone only contains prototype slots
c.slots ‐> forAll(cS | self.slot ‐> one(pS | cS.name = pS.name and

cS.value = pS.value))

ObjectStore

+ createObject() :Object
+ deleteObject() :void

Object

- id :int
- name :String

+ createClone() :Object
+ addSlot() :Slot
+ deleteSlot() :void
+ modifySlot() :void

Slot

- name :String
- Value :Object[*]

+objects

*

+slots

*

+prototype 0..1+clones *

2. Levels of Consistency Rigor between Prototypes and
Clones

56

 Clones and prototypes may evolve independently
 Different levels of consistency between clones and prototypes may apply

Level 0: Uncontrolled Compliance
 Clones may evolve completely independent from prototypes
 Prototypes are solely used as templates or classification mechanism

Level 1: Substantial Compliance
 Evolution of clones is partially restricted

Level 1a: Extension
Level 1b: Restriction
Level 1c: Redefinition

Level 2: Full Compliance
 Clones may not evolve independently of prototypes

2. Levels of Consistency Rigor between Prototypes and
Clones

57

Formalization of Consistency Levels: Consistency Constraints
Level 0: Uncontrolled Compliance

No consistency constraint required
Level 1a: Extension

Level 1b: Restriction

Level 1c: Redefinition

Level 2: Full Compliance
Post-condition of createClone() operation must always hold

‐‐ clone defines all prototype slots but may define additional slots
context Object [self.prototype <> OclUndefined]
inv: self.prototype.slots ‐> forAll(pS | self.slots ‐> one(cS | pS.name = cS.name
and pS.value = cS.value))

‐‐ clone defines subset of prototype slots
inv: self.slots ‐> forAll(cS | self.prototype.slots ‐> one(pS | cS.name = pS.name
and cS.value = pS.value))

‐‐ clone may redefine values of prototype slots
context Object [self.prototype <> OclUndefined]
inv: self.slots ‐> forAll(cS | self.prototype.slots ‐> one(pS | cS.name = pS.name))
inv: self.prototype.slots ‐> forAll(pS | self.slots ‐> one(cS | pS.name = cS.name))

3. Change Types on Prototypes and their Impact on
Prototype/Clone Consistency

58

Change Types

Impact on Prototype/Clone Consistency

ObjectStore

+ createObject() :Object
+ deleteObject() :void

Object

+ addSlot() :Slot
+ deleteSlot() :void
+ modifySlot() :void

Slot
+objects

*

+slots

*

+prototype 0..1+clones *

Operation L0 L1a L1b L1c L2
ObjectStore::createObject ↑ ↑ ↑ ↑ ↑
ObjectStore::deleteObject ≠ ≠ ≠ ≠ ≠
Object::addSlot ↑ ≠ ↑ ≠ ≠
Object::deleteSlot ↑ ↑ ≠ ≠ ≠
Object::modifySlot ↑ ≠ ≠ ↑ ≠

↑ non-breaking
≠ breaking

change on prototype impact on consistency of clones

3. Change Types on Prototypes and their Impact on
Prototype/Clone Consistency

59

Example
Desired consistency level: L1a Extension

Motor : Object

- id = 1
- name = "Motor"

: Slot

- name = "nominal speed"
- value = 9000

M1 : Object

- id = 2
- name = "M1"

: Slot

- name = "nominal speed"
- value = 9000

+prototype +clones

‐‐ clone defines all prototype slots but may define additional slots
context Object [self.prototype <> OclUndefined]
inv: self.prototype.slots ‐> forAll(pS | self.slots ‐> one(cS | pS.name = cS.name
and pS.value = cS.value))

3. Change Types on Prototypes and Their Impact on
Prototype/Clone Consistency

60

Example
Desired consistency level: L1a Extension

Motor : Object

- id = 1
- name = "Motor"

: Slot

- name = "nominal speed"
- value = 9000

M1 : Object

- id = 2
- name = "M1"

: Slot

- name = "nominal speed"
- value = 9000

: Slot

- name = "min rotation speed"
- value = 5800

+prototype +clones

‐‐ clone defines all prototype slots but may define additional slots
context Object [self.prototype <> OclUndefined]
inv: self.prototype.slots ‐> forAll(pS | self.slots ‐> one(cS | pS.name = cS.name
and pS.value = cS.value))

addSlot()

3. Change Types on Prototypes and Their Impact on
Prototype/Clone Consistency

61

Example
Desired consistency level: L1a Extension

Motor : Object

- id = 1
- name = "Motor"

: Slot

- name = "nominal speed"
- value = 9000

M1 : Object

- id = 2
- name = "M1"

: Slot

- name = "nominal speed"
- value = 9000

: Slot

- name = "min rotation speed"
- value = 5800

+prototype +clones

‐‐ clone defines all prototype slots but may define additional slots
context Object [self.prototype <> OclUndefined]
inv: self.prototype.slots ‐> forAll(pS | self.slots ‐> one(cS | pS.name = cS.name
and pS.value = cS.value))

addSlot()

4. Repair Operations to re-establish Prototype/Clone
Consistency

62

 Breaking changes lead to inconsistencies between prototypes and
clones and violations of consistency levels

 Re-establishing prototype/clone consistency requires
1. Detection of inconsistent clones through consistency constraint
2. Application of repair operations on clones to resolve inconsistency

Operation L0 L1a L1b L1c L2
ObjectStore::createObject ↑ ↑ ↑ ↑ ↑
ObjectStore::deleteObject ≠ ≠ ≠ ≠ ≠
Object::addSlot ↑ ≠ ↑ ≠ ≠
Object::deleteSlot ↑ ↑ ≠ ≠ ≠
Object::modifySlot ↑ ≠ ≠ ↑ ≠
≠ manual resolution needed ≠ automated resolution possible

> Add slot to clones
> Remove slot from clones
> Update slot value in clones

4. Repair Operations to Re-Establish Prototype/Clone
Consistency

63

Example
Desired consistency level: L1a Extension

Motor : Object

- id = 1
- name = "Motor"

: Slot

- name = "nominal speed"
- value = 9000

M1 : Object

- id = 2
- name = "M1"

: Slot

- name = "nominal speed"
- value = 9000

: Slot

- name = "min rotation speed"
- value = 5800

+prototype +clones

‐‐ clone defines all prototype slots but may define additional slots
context Object [self.prototype <> OclUndefined]
inv: self.prototype.slots ‐> forAll(pS | self.slots ‐> one(cS | pS.name = cS.name
and pS.value = cS.value))

addSlot()

4. Repair Operations to Re-Establish Prototype/Clone
Consistency

64

Example
Desired consistency level: L1a Extension

Motor : Object

- id = 1
- name = "Motor"

: Slot

- name = "nominal speed"
- value = 9000

M1 : Object

- id = 2
- name = "M1"

: Slot

- name = "nominal speed"
- value = 9000

: Slot

- name = "min rotation speed"
- value = 5800

+prototype +clones

addSlot()

fix title : "Add missing slots from prototype" do
for (pS : self.prototype.slots)
if (not self.slots ‐> exists(cS | cS.name = pS.name))
self.addSlot(pSlot.copy())

: Slot

- name = "min rotation speed"
- value = 5800

addSlot()

Case Study: AutomationML

65

 Mapping of generic framework to AutomationML

Prototype
Clone

Slot
AutomationML Metamodel (excerpt)

Object

Object

Generic Metamodel for Prototype-Based Languages

Case Study: AutomationML

66

 Tool support
a) Run configurations for different

Consistency Level Rigors
b) Evolution: Attribute added to

SystemUnitClass (=Prototype)
c) Validation Results with proposed

fixes

Summary

67

 Evolving libraries and co-evolving system models
 General model to characterize prototype-based languages
 Minimal change model and classified changes based on different

consistency levels
 Adopted the general model to AutomationML
 Tool support for consistency checks and (semi-)automated fixing

 Future work
 Define nesting and inheritance for prototypes in the general model
 Consider all concepts of AutomationML (e.g., interfaces and roles

resulting in multi-level prototype/clone relationships)

Our AML Research Topics

68

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0Modeling
AML

Language
Connections

Evolution
SupportLinking

AML

AML Data Integration and Version Management

69

 Process for AML
Data Integration and
Version Management
 Versioning of Data Elements
 Linking the versioned

engineering Results

 Model-driven tool support

The AutomationML Repository

70

Linking Engineering Artefacts (view of a plant planner)

71

d) Link properties

a) Repository with artefacts b) Links: artefacts topology c) Plant topology

Linking Metamodel

72

Evaluation

73

Lab-sized Production System
“Equipment Center for Distributed Systems,”
http://www.iafbg.ovgu.de/en/technische ausstattung
cvs.html, Institute of Ergonomics, Manufacturing Systems
and Automation at Otto-v.-Guericke University Magdeburg.

 RQ1 Roundtrip capabilites
 Are transformations between

AML XML and AML models possible
without loss of information?

 Result: All reference examples and
real world examples could be
transformed to AML models and back
to AML XML without loss of information

 RQ2 Integration capabilites
 Is the linking language expressive

enough for practical settings?
 Result: All mappings of a lab-sized

production system (picture to the right)
could be modeled

Content

74

 Introduction
 Modeling and Model-Driven Engineering in Software Engineering
 Cyber-Physical Production Systems (CPPS)

 MDE in CPPS I: Interface Integration

 MDE in CPPS II: Model Exchange

 Résumé

Introduction Interface Integration Model Exchange Rèsumè

Résumé
Our Lessons Learned

 Model-Driven Engineering is beneficial to
 Represent modeling languages
 Derive tool support
 Bridging different languages

 Resulting modeling tools are
 Open and extensible
 Usable in combination based on model exchange
 Allow for a mixture of modeling languages leading to multi-paradigm

modeling approaches
 Model management support is available out-of-the-box based on

common metamodeling language

75

Next Step: Models, Standards, and Technology for
Digital Transformation

Model-driven Engineering

InteGra4.0

CDL-Flex

ISA-95ISA-95

B2MMLB2MML

UMM, CCTSUMM, CCTS

UN/EDIFACT
XML, WebServices
UN/EDIFACT
XML, WebServices

EXTERNALINTERNAL

operational
layer

strategic
layer value

exchange

Legend:
Business Operational View
(BOV) related standards
Functional Service View
(FSV) related standards

Open-edi
reference framework

AutomationMLAutomationML
CAEX, Collada,

PLCOpen
CAEX, Collada,

PLCOpen

OPC UAOPC UA

Services
(read, write, monitor)

Services
(read, write, monitor)

IEC 61131-3IEC 61131-3

REAREA

REA DSLREA DSL

ERP and MES

Plant
Information

PLC
Programming

Level
Applications

tactical
layer

value
creation

76

»Pre-Knowledge«

MDE Practice
in CPPS

 Appropriateness of
some standards
questionable (SysML)
– not yet adopted

 CASE-tool vendors
jump on the MDE
bandwagon

State of the Art

Implicit
Knowledge

MDE Research
in CPPS

 Many different proposals,
application areas and goals
 E.g., DSMLs,

Models@Runtime, Model-
based Testing, Simulation,
Validation, and Verification,
Multi-Paradigm Modeling, …

 Emerging standards and
initiatives
 E.g., ManTIS DTF @ OMG

Community
Knowledge

Explicit
Knowledge

Consolidation, Integration,
Verification, Communication,
and Industrialization

Résumé

77

Model-Driven Engineering in CPPS – Still enough to do :-!

Résumé

78

Model-Driven Engineering – Yet Another Silver Bullet?

 Are existing standards mature enough to represent a proper basis for
engineering CPPS ...

... or are they just a more or less useful
patchwork of interests of different parties?

 Are existing MDE-tools capable to manage increasing systems complexity
...

... or doesn‘t they contribute even more to the
complexity of systems engineering?

 Do we already understand the „modeling phenomenon“ enough in order to
build appropriate MDE techniques ...

... or are we still in the „crafts(wo)menship“ phase, recalling
just another CASE-tool area?

Thanks to…

79

Christian
Huemer

Tanja
Mayerhofer

Manuel
Wimmer

Alexandra
Mazak

Luca
Berardinelli

Emanuel
Mätzler

Model-driven Engineering

InteGra4.0

CDL-Flex

Stefan
Biffl

Arndt
Lüder

